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Abstract—Fire monitoring and detection systems can evaluate
data from environmental or image sensors in order to predict
occurrences of fire. It is a complex procedure that requires a sig-
nificant amount of energy as input data is usually acquired from
multiple sensors and the algorithms generally have an increased
complexity. This paper introduces a low-power fire monitoring
and detection system that utilizes data from two environmental
sensors. As a predictive algorithm for fire occurrences, it uses
a multilayer perceptron (MLP) with a combination of different
optimizations, developing a model with low memory requirements
and high-accuracy predictions. The accuracy of the proposed
system was verified using a dataset created by the environmental
sensors for fire incidents and its performance was compared
to existing approaches. An evaluation of the proposed system’s
power consumption and memory requirements is also presented.

Index Terms—Fire detection and monitoring, Embedded sys-
tems, Low-power, MLP

I. INTRODUCTION

Fire is a procedure of burning combustible materials. It
is a chemical reaction that, when combined with oxygen,
releases heat and flames and can often cause significant
damages in personal property and casualties of human lives.
Fire monitoring and detection systems are significant features
of surveillance systems and can be used to detect fire in early
stages in order to avoid its spread.

Two main methods of fire detection have been proposed
in the literature. The first is based on environmental sensors
such as temperature, humidity, smoke and gas [1], [2], [3]
with the main goal being to detect fire incidents at an early
stage, without memory or power consumption constraints.
The second is based on a combination of image sensing and
machine learning algorithms for image processing [4], [2].
Such a system can detect a fire from direct flames but only
after the fire has spread.

Existing systems [1], [5] commonly use one or more sensors
for fire monitoring or detection and usually without any
memory or power constraints as the systems that execute the
models have enough system resources and continuous power

supply. Also, algorithms used for fire monitoring are complex
and generally have increased memory requirements. Thus,
such systems cannot be implemented on embedded systems
with limited system resources. To fill this research gap, a low-
power embedded system for fire monitoring and detection is
proposed in this paper, using an efficient Neural Network. The
low-power consumption and memory footprint of the proposed
system, as well as its high-accuracy predictions, make it an
innovative solution for integration into an embedded system.

The rest of the paper is structured as follows: Section II
details previous research on fire monitoring and detection
systems. In section III, the architecture of the proposed system
is presented, along with different optimization techniques.
In section IV, experimental results on energy consumption,
memory requirements and the accuracy of the proposed model
are presented with a comparison to existing approaches. Fi-
nally, section V presents the conclusions of this research and
discusses future work.

II. RELATED WORK

In the past few years, a growing number of articles on
fire monitoring and detection systems have been published,
but research on their implementation on embedded systems
is generally limited. A summary of various embedded fire
detection systems is presented in Table I. and a comparison
is performed in terms of the number and type of sensors
used, the classification algorithms and the implementation
platforms. The type of sensors utilized includes environmental
sensors, such as temperature, humidity as well as image
sensors. The classification algorithms used are based on the
fuzzy logic technique (FZ), if-then rules, Artificial Neural
Networks (ANNs), Convolutional Neural Networks (CNNs)
and the Dempster-Shafer theory (DS). The algorithms have
been implemented on the Arduino Uno, Raspberry Pi, Mica
Z, Beaglebone and MSP430 platforms.

A fuzzy logic-based multi-sensor fire detection system was
described in [2] and CNNs were trained for indoor and
outdoor scenarios. The system used multiple fire signatures



including flames, smoke and heat, as well as images from
surveillance cameras. It was implemented and tested on a
Beaglebone microprocessor, with an accuracy of 94% for the
CNNs algorithm and 90% for the FZ algorithm. A system,
based on an Arduino Uno, was also designed in [5] based on
FZ, to identify the existence of fire. Data was collected from
flame, temperature and smoke sensors.

A Wireless Sensor Network (WSN) was implemented in
[4] using multiple sensors for indoor fire detection. Smoke,
gas, and temperature sensors were used to detect fire on
a Raspberry PI. The energy consumption of the deployed
sensors was also computed, with a minimum of 0.5mW and
a maximum of 60mW per hour reported.

A low-power sensor node for early detection and monitoring
of fire was evaluated in [3]. Two algorithms were developed
on an MSP430 microcontroller (MCU) using a temperature
and humidity sensor. The first algorithm used a comparison
method, while the second was based on DS theory. The same
algorithms were utilized in [6] on a low-power ATmega1281
processor. The first was based on a threshold method, using
temperature, humidity and light sensors. The second used DS
with the nodes being equipped with temperature and humidity
sensors. A system to detect forest fires was developed in
[1], connecting WSN with ANNs. Low-cost sensor nodes,
including temperature, light, and smoke sensors were used
and the collected data was encoded as an input to ANNs. The
accuracy ranged between 87% to 99% for different scenarios,
while the power consumption of the system was not reported.

A CNN was used in [7], [8] for fire detection in surveillance
videos. Although this work improved the accuracy of fire
detection events, a high rate of false warnings was observed.
Moreover, the model size was not suitable for limited-memory
embedded systems.

TABLE I
SUMMARY OF THE STATE OF THE ART

Papers Sensors Type of sensors Classification Implement.
[1] 3 Env. ANN Mica Z
[2] 4 Env. & Image FZ & CNN Beaglebone
[3], [6] 3 Env. DS theory MSP430
[5] 3 Env. FZ Arduino Uno
[4] 3 Env. & Image if-then rules Raspberry Pi

Own
work

2 Env. MLP Cortex-M4

Previous studies [1], [2], [5], [3] used smoke sensors or
a combination of CO2, temperature and humidity sensors
to monitor or detect fire, however these are not sufficient
factors to predict actual fire incidents as they could generate
false warning signals [5]. Approaches, such as in [4], [2],
utilized image and environmental sensors for fire prediction
without any constraints in memory requirements and power
consumption.

III. SYSTEM ARCHITECTURE

This paper introduces a low-power fire monitoring and
detection system using an MLP, compact enough that it can

Fig. 1. The proposed MLP model

be executed on a system with limited memory resources. This
section contains details on the proposed MLP model, the
hardware and software implementation as well optimizations
that can be used to improve the accuracy of the model.

A. Multilayer Perceptron

ANNs can model complex linear and nonlinear problems
and make predictions with a high accuracy [9]. The percep-
tron [10] is a binary classification algorithm that determines
whether inputs belong to a specific event. An MLP is a group
of perceptrons that can be represented as layers, able to make
predictions for complex problems.

The proposed MLP model consists of five inputs, tempera-
ture, humidity, eCO2, TVOC and the output from the previous
execution of the MLP model, two hidden layers and an output
with binary values, that describe whether a fire incident has
been detected. Different approaches with a variable number
of hidden layers and units have been evaluated but as the
number of layers and units increased, the accuracy remained
at the same levels. Thus, two hidden layers are used. The
first contained 30 units, while the second 60 units. In both
hidden layers, the rectified linear unit was used as an activation
function as it had the best convergence performance. For
the output layer, the sigmoid function was used as it was a
supervised classification problem with only two values, zero
for no fire and one for fire. The overall model is illustrated in
Fig. 1.

The MLP was trained using the Adam optimizer for 100
epochs with a learning rate of 5 × 10−4 and a batch size of
32 samples. Subsequently, an L2 penalty of 0.05 was applied
on all hidden layers for regularization, as well the dropout
regularization with a value of 0.4 before the output of the
MLP, to improve its accuracy and to avoid over-fitting.

B. Implementation

The proposed model was implemented on a low-power
platform that consisted of an STM32L496 MCU and two
environmental sensors, BME680 and CCS811. The MCU is
based on a high performance ARM Cortex-M4 32-bit RISC
core, operating up to 80MHz. Cortex-M4 features a Floating-
point single-precision unit which supports all ARM single-



Fig. 2. Accuracy of the model in each timestep

precision data-processing instructions and data types. It also
implements a full set of DSP instructions and has 1Mb of
Flash memory and 320Kb of SRAM, split between 256Kb of
SRAM1 and 64Kb of SRAM2. The two sensors are connected
on the same I2C bus. The core includes different low-power
modes to reduce power consumption when the MCU does
not execute, including sleep mode, low-power run and sleep
modes, stop 0, 1 and 2 modes, a standby mode and a shutdown
mode [11].

BME680 is a gas sensor measuring relative humidity,
barometric pressure, ambient temperature and gas (VOC).
In order to reduce the consumption of the sensor, the gas
and pressure measurements were deactivated. The current
consumption of the sensor for temperature and humidity
measurement is 2.1µA. CCS811 is a digital ultra-low-power
multi-pixel air quality and gas sensor that provides measure-
ments for equivalent calculated carbon-dioxide (eCO2) and
Total Volatile Organic Compounds (TVOC). CCS811 supports
multiple measurement modes that have been optimized for
low-power consumption during an active sensor measurement
and idle mode, extending battery life in portable applications.
The maximum current consumption of CCS811 is 30mA at
3.6V .

For the experiments of this paper, the two environmental
sensors operated on the same 3.3V supply as the MCU. The
input data from BME680 was stored as float values while from
the CCS811 as unsigned integers. Training a Neural Network
involves increased data sizes stored in memory and a processor
that can support operations with an increased computational
complexity. As the MCU used has limited resources, the
training phase could not be performed on it. An external
node was used instead. Subsequently, the pre-trained MLP
model was converted into highly optimized math C code using
the Cube AI library, while the complete model was executed
directly on the SRAM of the system.

C. Optimizations

The initial implementation included an MCU that operates
always in active mode, environmental sensors that draw raw

data every second and a neural network that is executed
in the same time interval as well, using as an input the
measurements of the two environmental sensors. With this
approach, the system consumed 61.39mW on average, with
an accuracy of the MLP model of approximately 94.2%. This
section describes different optimizations that can be used to
reduce the power consumption and improve the accuracy of
the model. A significant percentage of the observed speedup
for the proposed algorithm is the result of the combination of
these techniques.

1) Chain of MLP models: To improve the prediction accu-
racy, a chain of MLP models is proposed that use as a feature
the output from the previous state and the measurements of
environmental sensors from the current state as well. The
process is described by the following equation:

OutMLPt =MLP (OutMLPt−1, Tt, Ht, (CO2)t, TV OCt),

t ≥ 1
(1)

where T is the temperature, H the humidity and t the number
of the previous states or timesteps. The size of the MLP chain
depends on the timesteps and is proportional to t. Fig. 2
describes the relationship of the accuracy to the number of
timesteps. Four timesteps have been selected for the proposed
system since in that case the highest change of value was
achieved in terms of accuracy. As the timesteps increase, the
model becomes slightly more accurate but with an increased
execution time, as more MLP models are used. Also, using
the prediction of the previous state as an input to the next
state, could reduce the accuracy of the model, as a prediction
error is entered from the previous state. Nonetheless, false
prediction from the previous state in combination with data
from environmental sensors of the current state do not appear
to affect the overall performance of the model. Additionally,
and in order to minimize the cost of loop overhead and
increase the code efficiency, loop unrolling was applied, in
the C code for each timestep of the MLP chain.

2) Quantization: Typically, the values of weights of an
ANN are stored as 32-bit floating-points. Quantization reduces
the number of bits that are used to store the values of weight
and activation functions of ANNs, converting the floating point
values to fixed-point integers. The operations between weights
are faster as the number of bits is smaller but at the expense
of the model’s accuracy. Thus, there is a tradeoff between
the number of bits that represent weights and the accuracy of
the model and some information may be lost [12]. A suitable
size of a quantized model with a small memory footprint
and a good classification performance is 8 bits [13]. This
paper also uses a value of 8 bits for quantization, however,
experimentation with different quantization sizes can be also
performed. To map float values to integers, two parameters are
only required. It is defined as:

quint8 =
rfloat32
sfloat32

+ zuint (2)



where q is the quantized representation, r the real value, s the
scale of initial data and z the offset.

3) CPU-specific optimizations: The use of hardware inter-
rupts can significantly reduce power consumption. Initially
the MCU is kept in sleep mode. When the value of eCO2

exceeds a predefined threshold, an interrupt signal is emitted
in order to wake up the MCU. The system returns back in sleep
mode as soon as the measurement is lower than the threshold.
The eCO2 concentration is used as a threshold since the first
warning signal in the case of fire is usually the presence of
smoke and an increase in temperature and TVOC is only
observed afterwards. Different experiments were performed to
determine the appropriate value of the eCO2 threshold. Fig.
3 presents the values of eCO2 every 10 seconds for approx-
imately 120 hours of measurements. The dark line describes
the scenario where a fire has broken out with a minimum value
of eCO2 concentration of approximately 1500ppm on average,
while the gray line represents an alternative scenario with
a maximum value of eCO2 concentration of approximately
700ppm on average. This paper proposes as a threshold the
mean value of the average minimum eCO2 concentration when
a fire has broken out with the average maximum value of eCO2

concentration when there is no fire incident. Thus, the selected
threshold was 1100ppm.

For the inactive/sleep period of the MCU, the Stop 2
power-mode of operation has been used in order to achieve
the lowest-power consumption while retaining the content of
SRAM and registers. In this mode, the current consumption
is 2.57µA. In run mode, the MCU supports dynamic voltage
scaling to optimize power consumption. The voltage from the
main regulator that supplies the logic (Vcore) can be adjusted
according to the system’s operating frequency. The CPU clock
of STM32L496 can be executed with a frequency of up to
80MHz, but for the implementation of this paper a frequency
of 4MHz was chosen, to reduce the power consumption and
minimize latency for accesses to the Flash memory without a
significant impact on the execution time of the model.

4) Memory accesses: When reading data from the Flash
memory, latency can be introduced in the form of wait states,
depending on the frequency of the CPU clock and the internal
voltage range of the device. In the case of STM32L496, there
are no wait states when the CPU clock is executed at up to
6MHz for a supply voltage of 1V . The SRAM1 and SRAM2
areas can both be addressed by the CPU at a maximum clock
frequency without a wait state.

The Flash memory interface of STM32L496 includes a
256B data cache memory with 8 cache lines of 4 × 64 bits
each. When data is requested by the CPU, frequently used
data lines can be stored in the cache in order to accelerate
code execution by enabling a data cache enable (DCEN) bit
in the Flash access control register. For the proposed model,
the output of MLP for each timestep was stored in the cache
memory. The use of the cache when there are no wait states for
accessing the Flash memory has no effect on the performance
of the algorithm. However, according to [14], the cache should
lower the power consumption of up to 20%, since accesses to

Fig. 3. CO2 concentration and threshold value

the cache needs significantly less current compared to accesses
to the Flash memory.

Fig. 4 presents a flow diagram of the proposed algorithm.
The process starts by initializing the MCU, restoring the
static RAM and initializing the two environmental sensors.
After initialization, the gas sensor acquires eCO2 concentration
measurements every 10sec, the MCU enters sleep mode and
the interrupts are enabled. In sleep mode, the main regulator
that supplies the core of the MCU is disabled and the Flash
memory is powered down while retaining the content of both
SRAM and registers. Furthermore, all clocks for the power
supply of digital peripherals are stopped and only two low-
speed clocks are running. The system remains in sleep mode
with the minimum power consumption until the concentration
of eCO2 exceeds a set threshold. When that happens, the
interrupt from the CCS811 will enable the MCU from sleep
mode, while input data for the temperature, humidity, eCO2

and TVOC will be available. To detect the abrupt changes in
the measurements, the lowest data update rate is chosen for
the two sensors. Thus, the sampling rate was changed from
10sec to 330msec as the lowest data update rate of BME680
is 330msec. When the system executes the process for fire
detection the interrupts are disabled to avoid an unexpected
interruption of the program. The execution of the first MLP
of the chain uses as input for the variable OutMLPt−1 the
default value of zero as no fire has been detected, while the
next MLP of the chain uses as an input the output of the
previous execution. When a prediction is available, the MCU
returns in sleep mode, the sampling rate changes to 10sec
while the interrupts are enabled.

IV. EVALUATION

This section presents the evaluation methodology, the eval-
uation metrics, the power consumption as well as the memory
requirements of the proposed system. A comparison of the
accuracy of the proposed model to existing approaches is also
provided.



Fig. 4. Flow diagram to handle interrupts and detect fire

A. Methodology

A set of data has been collected using the two sensors for
room environment monitoring. The raw data, that describe the
fire and no fire events, was acquired at regular 10-second
intervals. The experiments took place in an office with an
approximate temperature of 23oC and relative humidity of
approximately 32%. A minor fire incident was simulated.

In total, 4500 data points have been collected from the tem-
perature, humidity, CO2 and TVOC sensors, with a precision
of two decimals. Additionally, the dataset was balanced as it
contained equal instances from the fire and no fire classes.

As the proposed ANN used a gradient descent method as
an optimization technique, the input data had to be scaled.
The paper applied a standardization method, shifting the
distribution of each attribute to have a mean of 0 and a standard
deviation of 1.

B. Evaluation Metrics

For the evaluation phase, the k-fold cross-validation tech-
nique was used. K-fold is a resampling procedure which
divides the initial dataset into k sub-samples of equal size
at random. A single sub-sample from the k possible is kept
as validation data for testing the model, while the remaining
k− 1 are used for the training phase. A common choice of k
is between 5 and 10. For this paper, k = 10 was used.

To evaluate the performance of the proposed model, an Area
Under The Curve (AUC) - Receiver Operating Characteristics
(ROC) curve was used. The ROC is represented with a
probability curve that plots the false positive rate on the X axis
and the true positive rate on the Y axis. The AUC measures the
ability of a classifier to separate properly the dataset between
two classes. Also, it is used as a summary for the ROC curve.
The acceptable values are in the range [0−1] with the value of
1 indicating that the model is a perfect classifier. The accuracy
and f1 score, a metric that combines the precision and recall
of a classifier into a single metric, are used to compare the

TABLE II
COMPARISON OF MODELS IMPLEMENTATION

Papers Accuracy Enviromental Sensors
[4] 85% temperature, smoke, gas sensor
[2] 90% temperature, flame, smoke sensor
[5] 95.3% temperature, humidity, flame sensor

Own work 97.05% temperature, humidity, TVOC, CO2 sensor

proposed model with existing works. Moreover, the sensitivity,
a metric that measures the ability of the model to predict true
positives of each class, as well as the specificity, a metric that
measures the ability of the model to predict true negatives of
each class were used for evaluation purposes.

C. Experimental Results

Fig. 5 presents the AUC - ROC curve of two variations
of the proposed method using 4 timesteps. The solid line
describes the model variation represented with 32 bits, while
the dashed line the model with 8 bits representation. The
performance of both variations using the AUC metric was
very close, with a small decrease for the model with 8 bits,
with values of 0.99 and 0.97 respectively. As expected, the
variation with the fewest bits had a lower ability to separate
the two classes, but with a smaller size of the weights’ file.

Table II shows a comparison between the proposed model
and the literature. Different data points were used in the pre-
sented implementations from the literature but the comparison
made in terms of the effectiveness of the models as well as on
the sensors used. The model introduced in this paper, with
an 8-bit representation of weights and a k-fold validation,
had an accuracy of 97.05% with an f1 score of 97%, a
sensitivity of 97.1% and a specificity of 96.5%, among the
highest between the three presented implementations. The f1
score was affected by an incorrect classification of class 0
values to class 1 (fire occurrences). In these cases, the system
was creating false alarms, but this type of error does not
have a significant consequence as in the opposite scenario,
the non-activation of alarm in case of fire. Subsequently, Fig.
6 illustrates the training and validation average accuracy of
the model, using the k-fold cross-validation. As can be seen
after epochs 80, a remarkable accuracy has been achieved on
both the training and validation dataset. Moreover, as can be
seen from Table II, the introduction of the eCO2 and TVOC
values improved the accuracy of the model compared to the
other implementations.

D. Energy and Memory Requirements

The total power consumption can be defined as the sum of
the power expenditure during the active mode, divided into
data acquisition and processing, as well as the sleep mode.
In active mode, the MCU and the two environmental sensors
are switched on, having a power consumption of 60.8mW
on average with an energy cost of 80.5mJ . When the system
remains in sleep mode, the MCU operates on 13.7µA while
the CCS811 sensor consumes only 4.6mA until the value of



Fig. 5. AUC - ROC Curve of proposed model

Fig. 6. Accuracy at each epoch for train and validation dataset

the eCO2 concentration crosses the set threshold or the 10-
second interval has elapsed. In total, the sleep mode power
consumption is 15.2mW with a peak value of 59.4mW
every 10 seconds. Information on the power consumption for
implementations from the literature reviews was generally not
available, thus a comparison with these works was not feasible.

The execution of the MLP has a computational complexity
of 1.8K multiply-accumulate operations for each input and
the execution time for each decision is approximately 43msec.
When the system is in active mode, it consumes on average
2.31mW with the MLP algorithm requiring approximately
0.1mJ for each prediction. Thus, using a 5100mAh off-the-
shelf battery, with the system in sleep mode with interrupts
and an eCO2 measurement every 10 seconds, the system can
operate for over 37 days without any human intervention.

The memory requirements of the proposed system depend
on three factors, the input data from the sensors, the weights
of the MLP model and the intermediate results between
the hidden layers. The input data from the temperature and
humidity sensors is float, while from eCO2 and TVOC is
uint16 t. Consequently, the total memory requirements are 16
bytes, while the weights of the MLP model require 25.65kB
of Flash memory.

V. CONCLUSIONS

This paper proposed a low-power embedded system for fire
monitoring and detection using an interrupt-based algorithm
with a machine learning model. The MLP algorithm was used
with two hidden layers and a quantized model represented
with 8 bits. Compared to the other implementations in the
literature, the proposed approach had a remarkable accuracy
close to 97%, an ultra-low-power consumption and a model
size that requires only 4.9% of the 1Mb Flash memory.

In terms of future work, it will be interesting to integrate
an image sensor on a low-power embedded processor and
using a machine learning model make predictions for fire
incidents while keeping a low-power consumption. In addition,
the design and implementation of a new CO2 sensor with lower
power consumption would be helping to achieve a better result.
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