A low-power embedded system for fire monitoring and detection using a multilayer perceptron

Authors

- Alexios Papaioannou
- Panagiotis Verikios
- Charalampos S Kouzinopoulos
- Dimosthenis Ioannidis
- Dimitrios Tzovaras

Introduction

Motivation

Existing systems

without any memory or power constraints

continuous power supply

complex algorithm with increasing memory requirements

cannot be implemented on embedded systems

Outline

- Related work
- Background information
- Initial approach
- Optimizations
 - Software optimizations
 - Hardware optimizations
- Results
 - Power consumption
 - Performance of MLP model
 - Memory Requirements
- Summary
- Future work

Related Work

- Common approach
 - 3 or 4 environmental sensors or Image
 - ANN, CNN, Fuzzy Logic, if-then rules
- Implementation platform
 - Arduino Uno, MSP430, Beaglebone, Raspberry Pi
- Drawbacks
 - not suitable for limited-memory embedded systems
 - information on the power consumption was not available

Background information (1/2)

Hardware

STM32L496 MCU

Low-power platform based on ARM Cortex-M4 32-bit RISC

BME680

Temperature and Humidity

CCS811

Total Volatile Organic Compounds (TVOC) & equivalent Carbon Dioxide (eCO_2)

Background information (2/2)

Software

- Multilayer perceptron (MLP)
 - 5 input values (temperature, humidity, eCO_2 , TVOC, MLP previous output)
 - 2 Hidden layer, 1 Dropout
 - 1 output (binary value)

Initial Approach

Software Optimizations (1/3)

Chain of MLP models

 $OutMPL_t = MLP(OutMLP_{t-1}, T_t, H_t, (C0_2)_t, TVOC_t), t \ge 1$

Software Optimizations (2/3)

Chain of MLP models

Software Optimizations (3/3)

Loop unrolling

- minimizes the cost of loop overhead
- increases the code efficiency

Quantization

- reduces the number of bits converting the floating point values to fixed-point integers
- increases the operations between weights
- a value of 8 bits for quantization was used

•
$$q_{uint8} = \frac{r_{float32}}{s_{float32}} + z_{uint}$$

Hardware Optimizations (1/2)

Hardware interrupts

- reduce power consumption
- the eCO_2 concentration is used as a threshold
- the selected threshold was $1100 \mbox{ppm}$
- a frequency of 4MHz was chosen

Hardware Optimizations (2/2)

Memory accesses

- the Flash memory interface of STM32L496 includes a 256B data cache
- data lines can be stored in the cache in order to accelerate code execution
- the output of MLP for each timestep was stored in the cache
- has no effect on the performance of the algorithm

Flow Diagram

Evaluation Metrics

- k-fold cross-validation technique, with k = 10
 - avoid over-fit
 - finding the best fit model
- The Area Under The Curve (AUC) Receiver Operating Characteristics (ROC) curve

Results - Performance of MLP model (1/2)

- 4500 data points from the temperature, humidity, eCO_2 and TVOC sensors
- A standardization method was applied, shifting the distribution of each attribute to have a mean of 0 and a standard deviation of 1

Metrics	Value
Accuracy	97.05%
F1 score	97%
Sensitivity	97.1%
Specificity	96.5%

Results - Performance of MLP model (2/2)

A comparison of the two model variation, with 32 and 8 bits representation, using 4 timesteps

- AUC metric 0.99 for 32 bits
- AUC metric 0.97 for 8 bits

Results – Power Consumption

- In active mode the MCU and the two environmental sensors are switched on
- In sleep mode the MCU and BME680 are in sleep mode, while the CCS811 is in Pulse Heating Mode with measurements every 10 sec
- Using a 5100mAh off-the shelf battery the system can operate for over 37 days

Mode	MCU	CCS811	BME680	MLP model	Total Power Consumption
Active	2.3 mW	51.52 mW	6.93 mW	0.043 mW	60.8 mW
Sleep	0.045 mW	15.18 mW	0.003 mW	-	15.2 mW

Results – Memory Requirements

- The execution of the MLP has a computational complexity of 1.8K multiply-accumulate operations for each input
- The memory requirements of the proposed system depend on three factors:
 - the input data from the sensors with value 16 bytes
 - the weights of the MLP model combining with
 - the intermediate results between the hidden layers with total size 25.65 kB

Summary

- A low-power embedded system for fire monitoring and detection using an interrupt-based algorithm with a machine learning model
- A remarkable accuracy close to 97%
- An ultra-low-power consumption
- A model size that requires only 4.9% of the 1Mb Flash memory

Future Work

- It will be interesting to integrate an image sensor on a low-power embedded processor
- The use of a more complex machine learning algorithm, such as CNN for image processing
- The design and implementation of a new eCO_2 sensor with lower power consumption

www.amanda-project.eu

The AMANDA project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 825464

References

[1] F. Saeed, A. Paul, A. Rehman, W.H. Hong and H. Seo" IoT-Based Intelligent Modeling of Smart Home Environment for Fire Prevention and Safety", Journal of Sensor and Actuator Networks 2018, 7, 11.

[2] R.A. Sowah, K. Apeadu, F. Gatsi, K.O. Ampadu, B.S. Mensah, "Hardware Module Design and SoftwareImplementation of Multisensor Fire Detection and Notification System Using Fuzzy Logic and ConvolutionalNeural Networks (CNNs)." Journal of Engineering ,vol. 2020, February 2020.

[3] B. Sarwar, I.S. Bajwa, S. Ramzan, B. Ramzan, M. Kausar, "Design and application of fuzzy logic based firemonitoring and warning systems for smart buildings." Symmetry 2018, 10, 615, November 2018.

Thank you

for your time and attention

contact: alexiopa@iti.gr