

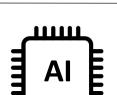
AMANDA The world in your hands

AutonoMous self powered miniAturized iNtelligent sensor for environmental sensing anD asset tracking in smArt IoT environments

AMANDA Project – Webinar Custom AI methods for low power systems

Alexis Papaioannou Machine Learning Engineer, CERTH/ITI

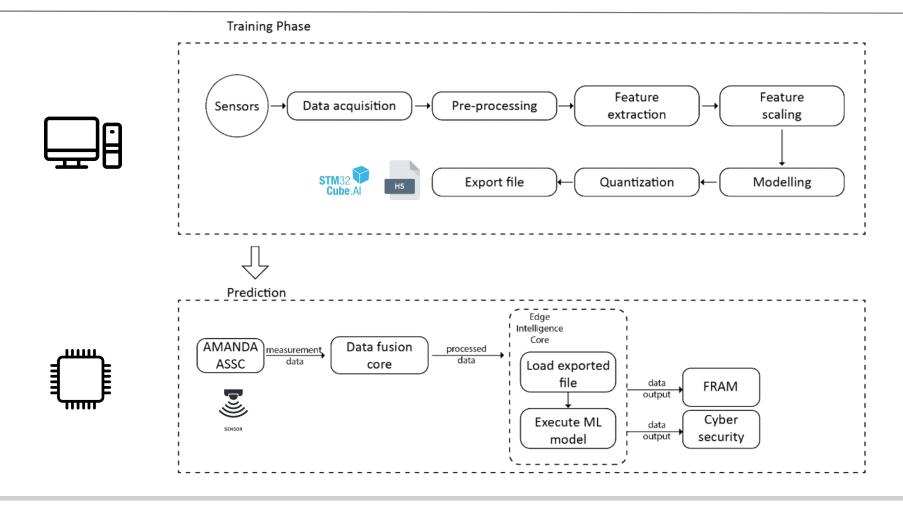
AMANDA project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 825464.


© Copyright AMANDA Project 2018 - All Rights Reserved

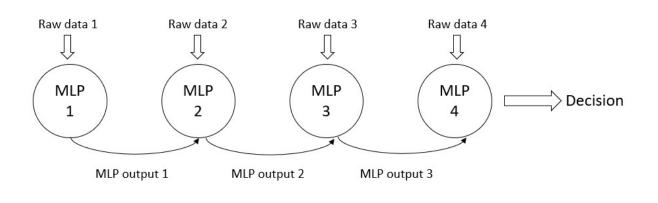
Agenda

We will briefly discuss the following:

- The Edge Intelligence core of the AMANDA card
- Low power machine learning algorithm for fire monitoring and detection
- Two machine learning methods to monitoring the transportation conditions of medicines/vaccines
- A low power object detection algorithm for crowd counting



AMANDA: Edge Intelligence Architecture



SC02: Fire monitoring

Input Data	ML algorithm	Optimized version of ML	Accuracy (initial/optimized)
Temperature, Humidity, CO2, VOC	MLP model	Chain of MLP models	94.2% / 97.05%

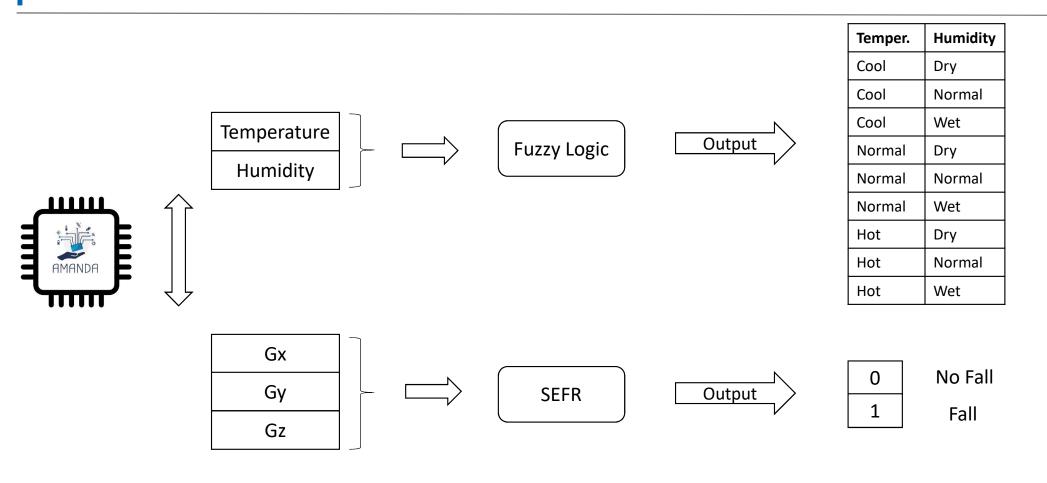
- Binary Classification problem outputs (0, 1)
- 5 Input Data (T, H, CO2, VOC, Previous State)
- Chain of MLP models

- 4500 data points from the temperature, humidity, eCO2 and TVOC sensors
- Quantization of 8 bit is applied
- A standardization method was applied, shifting the distribution of each attribute to have a mean of 0 and a standard deviation of 1

Metrics	Value	 Papers	Accuracy	Environmental Sensors
Accuracy	97.05%	[1]	85%	temperature, smoke, gas sensor
F1 score	97%	[2]	90%	temperature, flame, smoke sensor
Sensitivity	97.1%	[3]	95.3%	temperature, humidity, flame sensor
Specificity	96.5%	Own work	97.05%	temperature, humidity, TVOC, CO2 sensor

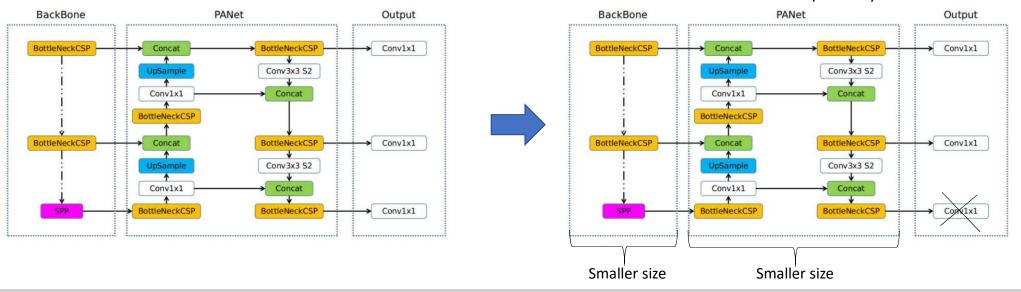
Published: https://ieeexplore.ieee.org/document/9530090

SC05: Monitor transportation conditions of medicines/vaccines


Input Data	ML algorithm	Optimized version of ML	Accuracy (initial/optimized)
Temperature, Humidity, Accelerometer	MLP model	Fuzzy Logic + SEFR	95.2% / 96.4%

- Fuzzy Logic
 - 2 Inputs (Temperature, Humidity)
 - 9 outputs
 - 3 conditions for Temperature
 - 3 conditions for Humidity
- SEFR
 - 3 Inputs (Gx, Gy, Gz)
 - Binary output (Fall, no Fall)

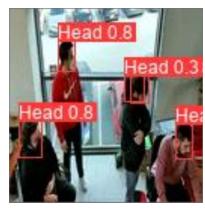
SC05: Monitor transportation conditions of medicines/vaccines


SC06: Crowd counting for social distancing

Input Data	ML algorithm	Optimized version of ML	Accuracy (initial/optimized)
Image	CNN	YoloV5	94.2% / mAP (0.5): 97.04% mAP (0.5-0.95): 61.9%

Yolov5

Yolov5 Lite (71 sec)


SC06: Crowd counting for social distancing

AMANDA

Yolov5 Ultra Lite

- Replace Backbone with the ShuffleNetV2
- Reduce the size of PANet layer
- Create a custom non maximum suppression method
- Reduce the number of outputs (from 3 to 2)
- Quantization to 8bit
- Accuracy:
- mAP(0.5): 97,04%
- mAP(0.5-0.95): 61,9%
- Model size: 0.2 Mb
- Execution time: 21 sec

AMANDA The world in your hands

AutonoMous self powered miniAturized iNtelligent sensor for environmental sensing anD asset tracking in smArt IoT environments

Thank you Q&A

Alexis Papaioannou CERTH/ITI alexiopa@iti.gr

Information Technologies Institute

AMANDA project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 825464.

© Copyright AMANDA Project 2018 - All Rights Reserved

