

Using New Memory technologies to Reduce the Energy Requirements of LPWAN Nodes (status of the work)

Authors: M. Meli, S. Kunz (ZHAW, Switzerland)

Embedded World 2022,Nuremberg Presented by: Marcel Meli, Stefan Kunz, ZHAW, Correspondence to: mema@zhaw.ch

AMANDA project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 825464.

- Motivation
- Reducing energy losses and issues
- Implementation
- Evaluation of a ReRAM MCU
- Conclusion
- Support acknowledgements
 - Part of the work related to research projects at ZHAW-InES
 - Part of the work related to Amanda H2020 project

Lost energy

- Many nodes are event driven. Spend time in LP modes when not active
 - Smaller currents than in active modes (a few μ A against several mA)
- How much energy is lost in typical LP mode if in LP mode 50% of time?
 - RTC + memory retention (wake on RTC, measure, process, transmit, sleep)
 - $2\mu A @ 3V \rightarrow 6^{*}24^{*}3600^{*}0.5 \rightarrow \sim 260 \text{mJ}$
 - 4µA @ 3V → ~520mJ
- Battery life using CR2032 (250mAh)
 - For an average of $5\mu A \rightarrow \sim \frac{5.7 \text{ years}}{1000 \text{ years}}$
 - For an average of $7\mu A \rightarrow \sim 4$ years
- A few μA can seriously affect lifetime

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM2 mode, VSCALE0	IEM2_VS	256 kB RAM and full Radio RAM retention, RTC running from LFXO ¹	-	4.2	Max Max 2 2 2 8 9 8 9 5	μA
		256 kB RAM and full Radio RAM retention, RTC running from LFRCO ¹	-	4.2		μA
		16 kB RAM and full Radio RAM retention, RTC running from LFXO ¹	-	1.8	-	μA
		16 kB RAM and full Radio RAM retention, RTC running from LFRCO ¹	- 1.9 -	-	μA	
		16 kB RAM and full Radio RAM retention, RTC running from LFRCO in precision mode ¹	-	2.8	-	μA
Current consumption in EM3 mode, VSCALE0	IEM3_VS	256 kB RAM and full Radio RAM retention, RTC running from ULFRCO ¹	-	3.9	Max	μA
		16 kB RAM and full Radio RAM retention, RTC running from ULFRCO ¹	-	1.5	-	μA

23. 06. 2022 Marcel Meli, Stefan Kunz.

Embedded World 2022, Nuremberg

Lost energy

Motivation

- Current exponentially depends on temperature
 - Energy losses higher when temp. increases
- If harvested energy used (say small solar cell)
 - In LP, more current is like an extra load
 - ► Shifts minimal light intensity for EH
 - ► Harvesting process stops earlier
 - ► Storage emptied earlier or must be larger

How can one reduce/stop those losses?

(Yn

al Supp

5 50

4

Method

- Save status of embedded system in NV memory (retention energy = 0)
- Switch off all the loads (current = 0; No temp. dependency)
- Use external RTC/timer with small current to schedule events
 - Some low-power RTC/timers require <100nA (depending on accuracy)
- Energy cost: Reboot, save/restore status, RTC/timer.
 - Gains exceed losses if ES often in PD and frequency of change to PD mode is low

Issues

- Save status of embedded system in NV memory
 - How often can one save/restore? Endurance of NV memory is important
- Restart embedded system, save/restore status cost energy
 - Need low-power NV memory
 - Need to minimize these operations
- Example: Schedule for every 5 mins
 - >100k cycles per year and > 1 million cycles after 10 years
 - Scheduling control depends on application. Sensors could also be used.
- Which type of memory could allow this?
 - Non volatile; low power at read/write; high endurance; low cost

Memory technologies

- Flash: Most popular. Lowest cost. Found in most MCUs
 - Endurance is lowest: Tens of thousands of cycles; Retention 10 years
 - Slowest to program. Need more energy to program (high voltage circuit integrated)
- FRAM:
 - Stand alone serial; Integrated in MCUs (MSP430); Retention > 10 years
 - Endurance of > 10¹⁴ cycles; read is destructive (must be followed by write)

Ferroelectric random access memory (FRAM)

- Up to 64KB of nonvolatile memory
- Ultra-low-power writes
- Fast write at 125 ns per word (64KB in 4 ms)
- Unified memory = program + data + storage in one single space
- 10¹⁵ write cycle endurance
- Radiation resistant and nonmagnetic

Ref: https://www.ti.com/lit/ds/symlink/msp430fr5043.pdf

Reducing energy losses

Memory technologies

- MRAM; very good endurance and retention; fast and low power.
 - Stand alone or embedded
 - High end MCUs (Apollo4, Gap9)
- ReRAM: Low power; Retention > 10 years
 - Endurance better than Flash but not as good as FRAM/MRAM
 - Many issues in production have led to slow down of commercialisation
 - Renewed interest

MR25H256 **FEATURES** No write delavs Unlimited write endurance Data retention greater than 20 years Automatic data protection on power loss Block write protection Fast, simple SPI interface with up to 40 MHz clock rate 2.7 to 3.6 Volt power supply range Low current sleep mode https://www.everspin.com/getdatasheet/MR25H256 ■ FEATURES Bit configuration : 8 Mbits (1.048.576 words × 8 bits) Serial Peripheral Interface : SPI (Serial Peripheral Interface) Correspondent to SPI mode 0 (0, 0) and mode 3 (1, 1) Write buffer size : 256 bytes Operating frequency : 10 MHz (Max) Data endurance : 1×10^6 times / 4bvtes* *4 bytes are selected by A1 to A0. Data retention : 10 years (+85 °C) Operating power supply voltage : 1.6 V to 3.6 V Operating power supply current : Write current 1.5 mA (Typ) Read current 0.15 mA (Typ@5 MHz) Standby current 60 µA (Typ) Sleep current 6 µA (Typ)

ReRAM reference: <u>https://www.fujitsu.com/jp/group/fsm/en/documents/</u> products/reram/lineup/<mark>MB85AS8MT</mark>-DS501-00060-2v1-E.pdf

- The EM8500/EM8502 integrates several of the needed blocks
 - Booster that allows the use of solar cells
 - The switch and the timer are internal
 - ► The switch can be controlled by the internal low power timer

The ZHAW configurator can be used to set the parameters such as comparator thresholds, LDO values, timer value (to control the switch)

Implementation

Take memory and power supply parameters into account. Save in NV memory only when needed Example of chart that could help optimise the use of the method

Why?

- ReRAM is seen as a potentially low-cost technology
- There is renewed interest in that technology
- We intend to use it for IoT nodes. Not much has been done in that direction

The device

- 8-bit MCU from Panasonic. Launched in 2013
- Operating voltage and frequency 1.1V to 3.6V ; 40KHz 10 MHz
- Program memory: ReRAM with 1000 endurance of cycles
- Data memory: ReRAM with 100'000 endurance cycles
- ReRAM min read voltage 1.1V; Min write voltage 1.3V

Evaluation of a ReRAM MCU

Measurement setup:

Measurement with 1MHz Clock speed @ 1.3V:

Measurements of energy consumption give values that mostly fit with the manufacturer's specifications:

Setup	Startup	Startup		Workloop / Halt0/ Halt2 / Stop0			
Clock speed	Voltage supply	Duration	Energy consumption	meanpower			
10 MHz	1.8 V	184.00 ms	11.70 uJ	3632.0 uW / 540.17 uW / 24.36 uW / 0.33 uW			
1 MHz	1.8 V	192.00 ms	11.56 uJ	408.21 uW / 142.88 uW / 18.35 uW / 2.39 uW (?)			
1 MHz	1.3 V	186.00 ms	6.74 uJ	280.61 uW / 93.27 uW / 8.00 uW / 0.51 uW			
Setup	Startup	Startup		Workloop / Halt1 / Halt3 / Stop1			
Clock speed	Voltage supply	Duration	Energy consumption	meanpower			
40 KHz	1.8 V	179.00 ms	10.55 uJ	24.43 uW / 11.42 uW / 9.63 uW / 0.48 uW			
40 KHz	1.3 V	167.00 ms	5.60 uJ	16.84 uW / 7.93 uW / 6.99 uW / 0.15 uW			
40 KHz	1.1 V	170.00 ms	4.13 uJ	13.82 uW / 6.39 uW / 5.64 uW / 0.10 uW			

Embedded World 2022, Nuremberg

13

Evaluation of a ReRAM MCU

- Startup MCU in Slow Mode (SYSCLK: 40Khz)
- write 10 times **2 Bytes** to ReRAM (1 MHz write clk)
 - 6 times change of bits
 - 4 times no change of bits

- Startup MCU in Slow Mode (SYSCLK: 40Khz)
- write 10 times **20 Bytes** to ReRAM(1 MHz write clk)
 - 6 times change of bits
 - 4 times no change of bits

Evaluation of a ReRAM MCU

Comparison of power consumption depending on memory-cell content (Setup: Normal mode, SYSCLK: 10 MHz, 10 MHz write clk, write 18 times 1 Byte)

The writing process does not always require the same amount of energy.

Fewer the number of bit changes \rightarrow less energy required for the write process. This can be used to define some variables in a way that the required energy is minimized.

Monitoring of supply voltage

- Change of supply voltage → interrupt
- Useful when PSU not stable (e.g. use of EH)
- Measurement scenario. Starts with power off
 - PSU at 1.1V. Tasks run at 40KHz
 - PSU at 3V
 - ReRAM accessed in interrupt routine
 - ► MCU then returns to previous task.
 - PSU back to 1.1V
 - System continues tasks
- Power at 1.1V 4 times less that power at 3V

Current LP modes

- Allow important energy optimisation
- However, there is potential for more savings in some cases

Careful use of NV memories such as FRAM/MRAM/ReRAM

- Low power read/write operation is advantageous
- Take into account memory parameters
 - Endurance is a critical parameter
- Take into account power supply characteristics
 - Energy harvesting systems introduce other requirements
- Careful design enables substantial improvements
- Keep and eye on ReRAM (if it really proves to be low-cost)

Enquiries to mema@zhaw.ch

Example of configuration setting of the PM

Example of configuration setting of the PM

	EM8502 Configurator							- 🗆 ×	
Fil	e Help About								
Bo	ck Diagram Parameters Timing	Diagram Regist	er Map						
	RegName in EEPROM area	Address	Related Register	Imp Value [hex]	Calc Value [hex]	Overwrite Value [hex]	Effective value [hex]	Physical representation	^
1	eeprom0	0x40	reg_t_hrv_period	0x05	0x05		0x05	8192 ms	
2	eeprom1	0x41	reg_t_hrv_meas	0x03	0x03		0x03	128 ms	
3	eeprom2	0x42	reg_t_sts_period	0x02	0x02		0x02	8 ms	
4	eeprom3	0x43	reg_t_lts_period	0x05	0x05		0x05	1024 ms	
5	eeprom4	0x44	reg_v_hrv_cfg	0x01	0x01		0x01	0.146 V (Typ) Current Measurement	
6	eeprom5	0x45	reg_hrv_check_lvl	0x01	0x01		0x01	2 μΑ	
7	eeprom6	0x46	reg_lts_cfg	0x00	0x00		0x00	rechargable battery battery protection:	
8	eeprom7	0x47	reg_v_bat_max_hi	0x29	0x2B		0x2B	3.212 V (Typ)	
9	eeprom8	0x48	reg_v_bat_max_lo	0x28	0x29		0x29	3.066 V (Typ)	
10	eeprom9	0x49	reg_v_bat_min_hi_dis	0x1E	0x21		0x21	2.482 V (Typ)	
11	eeprom10	0x4A	reg_v_bat_min_hi_con	0x1E	0x1F		0x1F	2.336 V (Typ)	
12	eeprom11	0x4B	reg_v_bat_min_lo	0x1D	0x1D		0x1D	2.19 V (Typ)	
13	eeprom12	0x4C	reg_v_apl_max_hi	0x25	0x26		0x26	2.847 V (Typ)	
14	eeprom13	0x4D	reg_v_apl_max_lo	0x21	0x23		0x23	2.628 V (Typ)	
15	eeprom14	0x4E	reg_ldo_cfg	0x91	0xC4		0xC4	VAUX LDO: 2.0V ULP LDO: 2.0V	
16	eeprom15	0x4F	reg_pwr_cfg	0x00	0x00		0x00		
17	eeprom16	0x50	reg_vaux_cfg	0x00	0x15		0x15		
18	eeprom17	0x51	reg_vaux_gnd_cfg	0x00	0x00		0x00		
19	eeprom18	0x52	reg_mppt_ratio	0x06	0x06		0x06	80%	
20	eeprom19	0x53	reg_ext_cfg	0x61	0x61		0x61	USB crt source: 5 mA Wake-up on:	
21	eeprom20	0x54	reg_t_sleep_vsup_lo	0xE8	0x60		0x60	Sleep delay	
22	eeprom21	0x55	reg_t_sleep_vsup_mid	0x03	0xEA		0xEA	h:min:sec:ms	
23	eeprom22	0x56	reg_t_sleep_vsup_hi	0x00	0x00		0x00	00:01:00:000	
24	eeprom23	0x57	reg_t_hrv_low_cfg	0x07	0x07		0x07	t_hrv_low_period: 256 ms	
25	eeprom24	0x58	reg_spi_i2c_cfg	0x77	0x77		0x77	I2C Address: 0x77	
26 WA	eeprom25 NING: VAUX[0] and VSUP could be at diff	0x59	reg pwr mgt	0x00	0x00		0x00	•	~

23. 06. 2022

Example of configuration setting of the PM

 EM8502 Configurator 			- 🗆	×	
File Help About					
Bock Diagram Parameters Timing Diagram Register Map					
Timing Configuration	Harvester Power Supervisory				
t_hrv_period 8192 ms	fixed to 16384 ms v_hrv_min 0.146 V 🗘 Ha	irvesting Element Solar Cell 🗸	For Solar Cell: The EM8502 monitors harvester power to prevent reverse current from the energy storage (LTS). The detection is done		
t_hrv_meas 128 ms 🗸	fixed to 64ms hrv_check_lvl 2 µA 💽 TE	G Resistance 0.0 Ω	regularly through a current sensor. The device is sensing the current at the voltage Vhrv_scv (70mV) delivered by the solar cell. The current threshold of detection is set through the		
Derault Mode t_sts_period Safe Mode	Auto Config Mi	nimum Open Voltage 100 mV	hrv_check_lvl register to disconnect the solar cell from the energy banks. To return to the running state, the EM8502 detection is done with a different principle. The current		
◯ Custom Mode t_lts_period 1024 ms ∨	Pir	1_min 200.0 nW	measurement is done by connecting a resistance on VDD_SOL and sense voltage on this pin using v_hrv_min voltage level.		
t_hrv_low_period 256 ms 🗸	Pir	1_max 20.0 mW			
t_lts_hrv_low_period 32768 ms	Im	1.0 mA	For TEG: Even if the EM8900 is not able deliver energy at the battery level it will not take energy from the battery. In fact, there is		
The frequency influences the overall EM8502 power consumption and therefore its e consumption in the section below.	fficiency. Check the The system indicates HRV_LOW ='1' from 2 i off until 0.146 V is reached with 23.3 kΩ load hysteresis of 1 μ A is applied.	JA at Vhrv_scv (70mV) and remains d on VDD_SOL (3 µA at 0,146 V). A	never, it will not take energy from the battery. In fact, there is no need of HRV supervisory with the EMB900, but its not possible to switch it off. Therefore we propose to select the lowest possible levels.		
Capacitors	Internal Consumption (Typical @ v_bat_max	_hi> Worst case)			
C_HRV 4.70 🚔 μF ∨	Efficiency Loss	2.79 %			
C_REG 470.00 € nF ∨	Consumption of HRV measurement	0.08 nW			
C_STS 47.00 € µF ∨	Consumption to supervise STS	167.29 nW	Overall internal consumption		
C_LTS 1.00 ♀ µF ∨	Consumption to supervise LTS	1.31 nW	1.08 μW		
	Consumption of internal oscilator, internal regulator, internal power management, POR etc.	417.6 nW			
	Consumption of ULP LDO	106.0 nW			
	Consumption of VAUX LDO	385.4 nW			
WARNING: VAUXI01 and VSUP could be at different voltage domain				.	