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Introduction Room Temperature lonic-Liquid (RTIL) gas sensors

Electrochemical gas sensors have great potential for low- We have selected the ionic liquid [Bmpyr][TFSI], based on its high solubility to CO, and O,, because
cost, ubiquitous sensing. Commonly, these sensors contain it is non-toxic, stable and has a large electrochemical window. The IL is deposited onto planar
an aqueous electrolyte. The electrolyte of the sensor three- or two-electrode configurations. The sensors are conditioned and operated using a home-built
presented here are ionic-liquid based. Room Temperature gas testing system and commercial potentiostat (BioLogic SP 300).
lonic Liquids (RTILs) have several favorable properties, ® °
such as low volatility, high stability and sufficient 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide lonic Liquid ~ ® N @ Gas Phase
conductivity. These properties allow for miniaturization [Bmpyr][TFSI] lL \.. e o .
of the sensors, which can be optimized for various gasses O 0 -
such as ethylene', O, and CO.,,. Q ch FaC—g—N-—g—CF3

(1) Zevenbergen,M.A. G, et al. (201 ). Electrochemical sensing of ethylene Hgo! + NS ® (I:I) (I_'I) Reference Electrode
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employing a thin ionic-liquid layer. Analytical Chemistry, 83(16),6300—6307.

Amperometric O, sensor

* O, sensor based on Si with interdigitated platinum (Pt) electrodes on 3D * CO, sensor based on ionic liquid-polymer gel deposited on top of

silica (SiO,) micropillars

Indium Tin Oxide (ITO) electrodes on glass

* Micropillars create a stable, continuous film of ionic liquid on top of the * Gel based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-

electrodes?

HFP, Mw ~400.000) in acetone
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Double Step Chrono-Amperometric (DSCA)

displayed equivalent circuit.

(2) Oudenhoven, . FE M. et al., (2015). Device and method for response at -0.4V and +0.6V vs. Pt ref shows
electrochemical gas sensing. European Patent EP 2827141 Al the improved stability of the sensor

Conclusion

We have developed miniaturized electrochemical gas sensors using a Room : unobtrusive, continuous,

Temperature lonic Liquid (RTIL) as electrolyte.

.. . o = Bypass
We optimized the sensors for detection of O, and CO, based on Amperometric Headspace . Oftine analytics

and Impedimetric detection respectively.

We explicitly evaluated the cross-sensitivity towards Relative Humidity,

something that is often neglected in the literature
applications such as on-demand ventilation
monitoring.

Benefits of these sensors are their small form factor, potential for low-cost
fabrication and possibility to integrate with low-power micro-electronics.
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